
第 06章：List Comprehension

	
	

² List Comprehension

In mathematics, the set comprehension notation can be used to
construct new sets from old sets.

 { x2 | x ∈ {1,2,3,4,5} }

In Haskell, a similar list comprehension notation can be used to
construct new lists from old lists.

 [x^2 | x <- [1..5]] === [1, 4, 9, 16, 25]

² Generator

The expression x <- [1..5] is called a generator, as it states how
to generate values for x.

Comprehensions can have multiple generators, separated by
commas. For example:

 [(x,y) | x <- [1, 2, 3], y <- [4, 5]]

 === [(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)]

Changing the order of the generators changes the order of the
elements in the final list:

 [(x,y) | y <- [4, 5], x <- [1, 2, 3]]

 === [(1,4), (2,4), (3,4), (1,5), (2,5), (3,5)]

Dependant Generator: Later generators can depend on the variables
that are introduced by earlier generators.

 [(x,y) | x <- [1..3], y <- [x..3]]

主要知识点：

¡ Generator / Guard / String Comprehension

 === [(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)]

Example: Using a dependant generator we can define the library
function that concatenates a list of lists:

concat :: [[a]] -> [a]	
concat xss = [x | xs <- xss, x <- xs]

² Guards	

List comprehensions can use guards to restrict the values produced
by earlier generators.

 [x | x <- [1..10], even x]

 === [2, 4, 6, 8, 10]

Example: Using a guard we can define a function that maps a
positive integer to its list of factors:

factors :: Int -> [Int]	
factors n = [x | x <- [1..n], mod n x == 0]

Example: A positive integer is prime if its only factors are 1 and
itself. Hence, using factors we can define a function that
decides if a number is prime:

prime :: Int -> Bool	
prime n = factors n == [1,n]

primes :: Int -> [Int]	
primes n = [x | x <- [2..n], prime x]

² The Zip Function

A useful library function is zip, which maps two lists to a list
of pairs of their corresponding elements.

zip :: [a] -> [b] -> [(a,b)]	
zip [] _ = []	
zip _ [] = []	
zip (a:as) (b:bs) = (a,b) : zip as bs

Example: Using zip, we can define a function that returns the list
of all pairs of adjacent elements from a list:

pairs :: [a] -> [(a,a)]	
pairs xs = zip xs (tail xs)

Example: Using zip, we can define a function that decides if the
elements in a list are sorted:

sorted :: Ord a => [a] -> Bool	
sorted xs = and [x <= y | (x,y) <- pairs xs]

Example: Using zip, we can define a function that returns the list
of all positions of a value in a list:

positions :: Eq a => a -> [a] -> [Int]	
positions x xs = [i | (x',i) <- zip xs [0..], x == x']

² String Comprehension

A string literal is a sequence of characters enclosed in double
quotes.

 "abcd" :: String

 === ['a', 'b', 'c', 'd'] :: [Char]

Because strings are just special kinds of lists, any polymorphic
function that operates on lists can also be applied to strings.

Similarly, list comprehensions can also be used to define
functions on strings, such counting how many times a character
occurs in a string.

count :: Char -> String -> Int	
count x xs = length [x' | x' <- xs, x == x']

² 凯撒加密问题	

To encode a string, Caesar simply replaced each letter in the
string by the letter three places further down in the alphabet,
wrapping around at the end of the alphabet.

	
加密 / encode

import Data.Char(ord, chr, isLower)
-- ord :: Char -> Int // 将字符转换为编码值
-- chr :: Int -> Char // 将编码值转换为字符
-- isLower :: Char -> Bool // 判断字符是否为小写字母
	
encode :: Int -> String -> String	
encode n xs = [shift n x | x <- xs]	
	

shift :: Int -> Char -> Char	
shift n c | isLower c = int2let $ mod (let2int c + n) 26	
shift n c | otherwise = c	
	
let2int :: Char -> Int	
let2int c = ord c - ord 'a'	
	
int2let :: Int -> Char	
int2let n = chr $ ord 'a' + n

解密 / crack

The key to cracking the Caesar cipher is the observation that some
letters are used more frequently than others in English text.

table :: [Float]

table = [8.1, 1.5, 2.8, 4.2, 12.7, 2.2, 2.0, 6.1, 7.0,

table = [0.2, 0.8, 4.0, 2.4, 6.7, 7.5, 1.9, 0.1, 6.0,

table = [6.3, 9.0, 2.8, 1.0, 2.4, 0.2, 2.0, 0.1]

-- table 中存放了 a,b,...,d 26个英文字母在英文中出现的概率/频率

A standard method for comparing a list of observed frequencies os
with a list of expected frequencies es is the chi-square statistic,
defined by the following summation in which

¡ n denotes the length of the two lists, and

¡ xsi denotes the ith element of a list xs counting from zero:

crack :: String -> String	
crack xs = encode (-factor) xs	
 where	
 factor = position (minimum chitab) chitab
	 	 	 	 -- minimum: a function exported by Prelude	
	
 -- 计算每种加密偏移量下的 chisqr	
 chitab = [chisqr (rotate n table') table | n <- [0..25]]	
	

 -- 计算密文中字母的出现频率	
 table' = freqs xs	
	
freqs :: String -> [Float]	
	
chisqr :: [Float] -> [Float] -> Float

	

	

作业 01

请给出凯撒解密函数的完整定义:

 crack :: String -> String

(仅考虑“明文中仅包含小写字母和空格”的情况)

作业 02

A triple (x,y,z) of positive integers is called pythagorean,

 if x2 + y2 = z2.

	

Using a list comprehension, define a function

 pyths :: Int -> [(Int,Int,Int)]

that maps an integer n to all such triples with components in
[1..n].

For example:

 ghci> pyths 5	
 [(3,4,5), (4,3,5)]

	

	

作业 03

A positive integer is perfect if it equals the sum of all of its
factors, excluding the number itself.

	

Using a list comprehension, define a function

 perfects :: Int -> [Int]

that returns the list of all perfect numbers up to a given limit.

For example:

 ghci> perfects 500	
 [6, 28, 496]

作业 04

The scalar product of two lists of integers xs and ys of length n
is give by the sum of the products of the corresponding integers:

	 	 	 	 	 	 	 	 	
Using a list comprehension, define a function that returns the
scalar product of two lists.

